TOXCAT: a measure of transmembrane helix association in a biological membrane.
نویسندگان
چکیده
The noncovalent association of transmembrane alpha-helices is a fundamental event in the folding of helical membrane proteins. In this work, a system (TOXCAT) is developed for the study of transmembrane helix-helix oligomerization in a natural membrane environment. This assay uses a chimeric construct composed of the N-terminal DNA binding domain of ToxR (a dimerization-dependent transcriptional activator) fused to a transmembrane domain (tm) of interest and a monomeric periplasmic anchor (the maltose binding protein). Association of the tms results in the ToxR-mediated activation of a reporter gene encoding chloramphenicol acetyltransferase (CAT). The level of CAT expression indicates the strength of tm association. The assay distinguishes between a known dimerizing tm and a mutant in which dimerization is disrupted. In addition, modulation of the chimera concentration shows that the dimerization exhibits concentration dependence in membranes. TOXCAT also is used to select oligomeric tms from a library of randomized sequences, demonstrating the potential of this system to reveal novel oligomerization motifs. The TOXCAT system has been used to investigate glycophorin A tm-mediated dimerization. Although the overall sensitivity of glycophorin A tm dimerization to mutagenesis is found to be similar in membranes and in detergent micelles, several significant differences exist. Mutations to polar residues, which are generally disruptive in SDS, exhibit sequence specificity in membranes, demonstrating both the limitations of detergent micelles and the wider range of application of the TOXCAT system.
منابع مشابه
Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay.
TOXCAT is a widely used genetic assay to study interactions of transmembrane helices within the inner membrane of the bacterium Escherichia coli. TOXCAT is based on a fusion construct that links a transmembrane domain of interest with a cytoplasmic DNA-binding domain from the Vibrio cholerae ToxR protein. Interaction driven by the transmembrane domain results in dimerization of the ToxR domain,...
متن کاملTransmembrane helix association affinity can be modulated by flanking and noninterfacial residues.
The GxxxG sequence motif mediates the association of transmembrane (TM) helices by providing a site of close contact between them. However, it is not sufficient for strong association. For example, both bacteriophage M13 major coat protein (MCP) and human erythrocyte protein glycophorin A (GpA) contain a GxxxG motif in their TM domains and form a homodimer, but the association affinity of MCP, ...
متن کاملThe affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication.
Sequence motifs are responsible for ensuring the proper assembly of transmembrane (TM) helices in the lipid bilayer. To understand the mechanism by which the affinity of a common TM-TM interactive motif is controlled at the sequence level, we compared two well characterized GXXXG motif-containing homodimers, those formed by human erythrocyte protein glycophorin A (GpA, high-affinity dimer) and ...
متن کاملStatistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
To find motifs that mediate helix-helix interactions in membrane proteins, we have analyzed frequently occurring combinations of residues in a database of transmembrane domains. Our analysis was performed with a novel formalism, which we call TMSTAT, for exactly calculating the expectancies of all pairs and triplets of residues in individual sequences, taking into account differential sequence ...
متن کاملSelf-association of transmembrane domain 2 (TM2), but not TM1, in carnitine palmitoyltransferase 1A: role of GXXXG(A) motifs.
Carnitine palmitoyltransferase 1 (CPT1) controls the rate of entry of long-chain fatty acids into the mitochondrial matrix for beta-oxidation and has been reported to exist as an oligomer. We have investigated the in vivo oligomerization of full-length rat CPT1A (rCPT1A) along with those of the N-terminal truncation/deletion mutants Delta(1-82), Delta(1-18), and Delta(19-30) expressed in yeast ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 3 شماره
صفحات -
تاریخ انتشار 1999